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s part of its mission to profile 
the people and economy of 
the U.S., the CensusBureau 
collects industry and occu­

pation data for individuals in the labor 
force. For the 1990 Decennial Census, 
each ofan estimated 22 million natural 
language responses to questions on the 
census long form had to be classified 
into one of232 industry categories and 
504 occupation categories. Ifdone fully 
by hand the cost of this task would be 
on the order of $15 million. 
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This article presents a new auto­
matic classification system-the 
Parallel Automated Coding Expert 
(PACE)-that takes advantage of a 
massively parallel supercomputer. 
The system is based on an empirical 
learning model called Memory­
based Reasoning (MBR) [28]. Fol­
lowing the MBR model, the PACE 
system uses a training database of 
132,000 previously classified re­
turns to classify new census returns 
not contained in the database. This 
contrasts with the Automated In­
dustry and Occupation Coding Sys­
tem (AIOCS), an automated system 
developed by the Census Bureau 
for the 1990 Census, which is essen­
tially an expert system driven by 
knowledge extracted from human 
experts and tested via the same 
preclassified database. The thesis of 
this article is that the MBR para­
digm provides a more accurate, 
more robust and simpler solution 
that is directly reflected in a much 
reduced software development ef­
fort. Case in point, the building of 
PACE required four person­
months while the expert system 
required 192 person-months. 
Moreover, PACE exhibits higher 
performance; it can process ap­
proximately 60% of the returns 
accurately while AIOCS can pro­
cess approximately 47%. MBR is 
well-matched to data parallel com­
puter hardware and programming 
models, such as those of th(: Con­
nection Machine, so that the final 
system operates rapidly, though the 
computational requirements are 
substantially higher than those re­
quired to run the expert system. 

The Census ClassIfication Task 
The industry and occupation data 
the Census Bureau collects consists 
of free text and multiple choice re­
sponses from over 22 million U.S. 
citizens. The actual questions and a 
typical response look like those in 
Table 1. 

Before 1990, industry and occu­
pation coding was performed using 
extremely expensive and time con­
suming clerical methods. The 
clerks used bulky procedure manu­

als and dictionaries of phrases and 
codes to classify cases. A section of 
the alphabetical index to industries 
coding manual that a clerk might 
use to classify the previous example 
is given in Table 2. 

Many approaches to automatic 
coding have been tried and are 
summarized in [19]. One such sys­
tem, the AIOCS [3, 4] was devel­
oped over the past eight years and 
used in the 1990 Decennial Census. 
To minimize cost and maximize 
accuracy the AIOCS system was 
augmented by the existing clerical 
coding system. Text from the long 
forms was keyed at seven process­
ing offices across the country, and 
then sent electronically to Census 
Bureau headquarters. There 
AIOCS attempted to assign an in­
dustry and occupation code to each 
case. Those cases that could not be 
reliably coded by AIOCS were sent 
to a staff of over five-hundred 
clerks working at the Kansas City 
processing office. They used a com­
puter-assisted method that allowed 
easy searching of a computerized 
version of the clerical coding manu­
als to complete the coding process. 
Final clerically assigned codes were 
transmitted back to headquarters to 
be included in the Decennial Cen­
sus publications and computer data 
products. 

AIOCS is essentially an expert 
system that uses a lexicon based 
upon the phrases that appear in the 
clerical coding manuals along with 
a pattern matching and a numerical 
weighting scheme based on an en­
tropy measure. This basic approach 
is supplemented by lexical tech­
niques that attempt to find mis­
spellings and synonyms and by logi­
cal analysis that directly recognizes 
and processes special cases. The 
development of AIOCS required 
intensive interaction between sub­
ject matter experts, who had inti­
mate knowledge of the clerical cod­
ing methods, and computer 
professionals who developed the 
expert system. This knowledge ac­
quisition phase of the project rep­
resented, as with other expert sys­
tems, a large part of the total effort 

and expense of the project. 
Other statistical approaches to 

the coding problem have been ex­
plored at the Census Bureau in the 
past [10, 201, but have never been 
implemented, partly because a suf­
ficiently large, representative sam­
ple of computer readable responses 
was not available. In 1986, a sample 
of 132,247 responses to the indus­
try and occupation questions from 
the 1980 Census was triply coded 
by clerks and reviewed by experts 
in order to provide a valid data set 
for evaluating the AIOCS system. 
This data set was also the basis of a 
more recent statistical approach 
[12]. Creecy's work was founded on 
two potential advantages that a 
sample-based classifier offered over 
AIOCS: 1) classification is based 
upon a database of the text from 
actual responses rather than the 
text from the clerical coding manu­
als, which may not match the word­
ing respondents actually use; and 
2) the sample contains information 
about the frequency of occurrence 
of codes and words in the popula­
tion of responses. Although the 
classifier resulting from this work 
was not as good as AIOCS, it sug­
gested that if a powerful enough 
computer were available, the data 
set could successfully be used as a 
training set for a new classifier. 
This idea led directly to the Con­
nection Machine implementation of 
PACE described in this article. 

Main Results 
Following the MBR methodology, 
PACE uses the 132,247 example 
database as a training database and 
a disjoint set of examples is used as 
a test database. PACE matches each 
new census return with the entire 
training database and assigns a 
code based on the codes of the (pre­
viously classified) nearest matches. 
The 132,247 example database is 
also required for the development 
of the expert system as it was 
needed as a testing set to accurately 
evaluate the performance of the 
system. In Table 3 we compare the 
performance of the two systems 
and their development times. The 
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reported development time reflects 
the amount of effort needed to 
build each system assuming no ex­
isting development tools other than 
standard programming languages. 
It can be directly compared to the 
effort needed to develop each sys­
tem exclusive of the time required 
by both systems to develop the 
training database. The perfor­
mance numbers indicate the per­
centage of the database that can be 
classified automatically, while con­
trolling accuracy to meet or exceed 
that of human coders (about 10% 
error rate on industry codes and 
14% error rate on occupation 
codes). 

The numbers in Table 3 show 
that PACE exhibits a 54% improve­
ment over the expert system in cov­
erage of occupation codes and a 
10% improvement for industry 
codes. If AIOCS had been used in 
the 1980 Census processing. the 
expert system would have resulted 
in a 47% reduction in clerical work­
load and if PACE had been used, it 
would have resulted in a 60% re­
duction in clerical workload. These 
improvements are substantial given 
the size of the coding task for the 
1990 Census (approximately 22 
million returns) and its cost (ap­
proximately $15 million). 

The MBR Approach 
MBR was introduced by Stanfill 
and Waltz in 1986 [28] and recent 
interest has been growing [I, 6]. 
Ideas related to MBR, however, 
have a long history. MBR comprises 
a series of variations on nearest 
neighbor classification schemes, 
with the addition of other statistical 
techniques [29]. The simplest near­
est neighbor technique consists of 
assigning a given example to the 
same category as the predassified 
example most similar to it. For ex­
ample, a very simple version of 
MBR uses a Hamming distance 
metric where the nearest neighbor 
is the example with the highest 
number of matching fields. For an 
excellent review of nearest neigh-. 
bor techniques, see [13]. 

Although this idea is conceptu­
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ally simple, it seems difficult to 
implement efficiently. MBR poten­
tially requires comparing a given 
example to every training example 
in the database; and computing the 
similarity between examples and 
cases generally requires more so­

phisticated measures than Ham­
ming distance, since the likelihood 
of exactly matching free text strings 
is small. The larger the database of 
predassified examples, the more 
likely the nearest neighbor algo­
rithm will arrive at the correct das-
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sification since an exact or nearly 
exact match becomes more likely. 
Storing and matching against these 
preclassified examples becomes, 
however, more and more expensive 
as the database increases in size. 

In general, classification accu­
racy increases slowly (less than line­
arly) as the database size is in­
creased, while the computational 
requirements of the larger database 
grow linearly. The processing time 
can be reduced by using better al­
gorithms. In fact, nearest neighbor 
algorithms are in some ways very 
close to information retrieval algo­
rithms used in text search engines. 
The information retrieval problem 
is usually solved on serial machines 
by use of a hash table or a precom­
piled inverted index or concord­
ance. (Text algorithms are particu­
larly applicable to the census 
classification task since much of the 
relevant information in each exam­
ple is contained in the free text 
fields of the example [18].) Another 
approach to this O(N) match prob­
lem is to obtain a speedup by using 
parallel computing hardware 
where the number of processors (P) 
equals the number of preclassified 
examples (N), giving a nearly con­
stant time solution. PACE uses a 
variant of this method where each 
processor holds 16 examples. 

MBR augments a simple nearest 
neighbor match by weighting rele­
vant data in the training examples 
more heavily than other data. For 
instance, consider the case where 
the industry field of a training ex­
ample includes the following 
phrase: "The computer industry." 
Of the three words "computer" is 
clearly the most important. It could 
even be argued that "the" and "in­
dustry" occur so often in the data­
base and in so many different cate­
gories that they should have little or 
no bearing in forming the match, as 
illustrated in Table 4. 

If the Hamming distance metric 
were used, then the second training 
example would be chosen as the 
nearest neighbor, when it is obvious 
that the first example is a better 
match. We later introduce several 

feature-weighting and evidence­
accumulation methods that can cor­
rect this error. These weighting 
algorithms for MBR systems make 
use of information metrics similar 
to Shannon's [22,24] or statistically 
derived metrics. Similar ideas on 
modified metrics have appeared in 
the nearest neighbor classification 
literature [15, 25] but have not 
often been used in practice. 

DIstInguIshIng FIelds from 
Features 
A second difference between MBR 
and simple nearest neighbor classi­
fication involves the nature of 
features. The terms "fields" and 
"feature" are often used inter­
changeably to describe pieces of the 
data structure that are useful for 
matching. We would like to distin­
guish them in the following way: 

Field: A division of the data within 
an individual example that is sup­
plied a priori by the data structure. 
Age and Industry Type are exam­
ples of fields in the census data 
structure. 

Feature: An element or grouping of 
the data that mayor may not be 
provided a priori, but must be de­
termined according to the increase 
in classification accuracy it provides 
in the partial match. Features might 
be conjunctions of fields, or they 
may be portions of a field or combi­
nations of portions of fields. 

MBR can create features from 
fields by grouping. For instance, 
the conjunction of the Age and 
Industry Type fields may produce a 
feature that is more useful at classi­
fication than either field by itself. 
In PACE, features are no more 
complex than two-element con­
junctions. In principle, feature con­
struction could be extended to 
n-element conjunctions. 

A third addition to the simplest 
nearest neighbor methods is the use 
of k nearest neighbors for some 
decisions, rather than only using a 
single nearest neighbor. Our MBR 
model includes methods for com­
bining information from the vari­

ous weighted fields within an exam­
ple, as well as algorithms for 
combining the information from 
the k nearest neighbors. 

Modifications to MBR 
to Extract Fields In Free Text 
Classification methods such as 
nearest neighbor [II], bayesian sta­
tistics, clustering [2], and empirical 
learning systems [22] are commonly 
designed for data fields that take on 
scalar numerical values. For exam­
ple, consider a database where each 
example contains only the single 
field "Age:" 

Examples 

xO xl x2 x3 

Age: 10 33 19 67
 
Class: A B A C
 

The "Age" field in this case is 
comparable across examples and is 
a field such that is easy to tell 
whether one example is "close" to 
another. Consider, however, a 
database that is more similar to the 
form of the census domain: 

xO xl x2 x3 

Word: car big retail factory 
Class: A B A C 

In this case there is no order that 
can be placed on the examples that 
makes sense in terms of classifica­
tion. In fact, this case which ap­
pears to have a single field "word," 
and can be more truthfully repre­
sented by four binary fields: 

xO xl x2 x3 

car I 0 0 0 
big 0 I 0 0 
retail 0 0 1 0 
factory 0 0 0 I 
Class: A B A C 

This second format is the one 
that is preferred by standard meth­
ods, and it brings home the true 
dimensionality of the database. In 
the case of the census database, 
there are over 50,000 different 
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words, potentially corresponding than Legal Services. What this word fields along with all pairwise 
to a 50,OOO-dimensional. binary­ means is if a query containing the conjunctions between them. For 
valued space. word "attorneys" is classified into example, the responses to the cen­

One problem with performing the legal services category, then this sus return presented earlier con­
nearest neighbor classification with will be the correct classification 98 sists of nine word fields: "essex.c", 
free text is that the textual data times out of 100. If the query con­ "electric.c", "photographic.i", "bat­
contained in the fields is not easily tains the word "attorney" it will be tery.i", "div.i", "apprentice.o", 
comparable. There are so many correctly classified only 68 times "electrician.o", "wiring.d", 
different ways of expressing occu­ out of 100, a tremendous differ­ "machinery.d"; and three numeric 
pations and industries as phrases ence in classification accuracy be­ fields: Industry Type = 0, Com­
that exact match cannot work (e.g., tween the singular and plural forms pany Class = 0, Age = 25. 
the duties field: "Serving food and of a single word. Features can be formed by com­
drink" does not match a phrase Thus, we see from the "at­ bining these word and numeric 
with only a slight modification: torney"l"attorneys" example that fields into a set of all pairwise con­
"Serving food and drinks"). With blindly stripping prefixes and suf­ junctions. In this example, there 
numeric fields, a distance or degree fixes from words to arrive at a ca­ are 12 fields corresponding to 144 
of match can be computed even in nonical stem must be used pru­ ordered conjunctions or 72 combi­
the absence of exact match (Le., we dently, if at all. It is our belief, and nations since the order of the fields 
know 100 does not equal 101, but the belief of some other researchers in the conjunction is ignored. 
we know that, in general, it is a bet­ who use data-driven approaches The difference in predictive 
ter match than that between 100 like MBR that the data rather than importance between a single field 
and 3). We need to use an analo­ human intuition should drive the feature and a conjunctive feature 
gous softer match on the free text. design of the application [8, 9]. can be substantial. In an example 
This can be partially accomplished from the census database the fields 
by matching specific words in text Extracting Features "shop.i" and "machinist.o" occur as 
fields rather than entire text fields. The census database used for this single field features. The probabili­
Thus in our previous example we work contains three numeric fields ties of an example being classified 
could note that the two text fields: and four free text fields (corre­ in the general machinery industry 
"Serving food and drink," and sponding to the responses to the category given either of these two 
"Serving food and drinks" match questions about company name, fields are 0.24 and 0.29 respec­
exactly on three out of four words­ industry, occupation and daily du­ tively. When a conjunctive feature 
not a perfect match, but nonethe­ ties). Each free text field is broken is formed, "shop.i" & "machinist.o" 
less l:1uch better than the match to a up into word fields. Each word field the conditional probability jumps to 
phrase such as "Driving trucks cross is tagged with the value of its source 0.93, i.e., if the fields occur in a test 
country." free text field, e.g., the word "attor­ example the chance for correct 

Given this example it is tempting ney" that occurs in the Industry classification using them separately 
to go even further and to enhance free text field is distinguishable is 24% or 29%, but when used to­
features by coercing words into from the word "attorney" occurring gether correct classification can be 
canonical forms-thus the two in the Occupation free text field. accomplished 93% of the time. 
phrases could both be coerced into: The distinction between words is Though creating conjunctive 
"Serve food and drink." It seems represented by appending a ".i" for features and their weights is benefi­
plausible that the use of canonical­ industry a ".0" for occupation, a cial to system accuracy, there is an 
stemmed forms could improve clas­ ".c" for company name or a ".d" for associated computational and stor­
sification accuracy. EmpiricalJy, duties ("attorney.i", "attorney.0", age cost. Some 65,000 training ex­
however, stemming is not always etc.). Keeping these words distinct amples produce over 4.5 million 
useful, and is often harmful [16]. can be important. In the census features. Despite the magnitude of 
Consider the two words "attorney" database, for example, when the this number, the conditional proba­
and "attorneys." It might be word "attorney" occurs in the Oc­ bilities used to weight the features 
thought that both these words have cupation text field the occupation can be calculated quickly on the 
basically the same meaning and classification is most likely to be that Connection Machine system. This 
could be used interchangeably. of a lawyer. When the word "attor­ can be done either at run time 
This is not the case in the census ney" appears in the Industry field, where calculating only the features 
database. All but 2% of the occur­ however, it is more likely to be de­ relevant to the current test example 
rences of the word "attorneys" be­ scribing an attorney's office and the can be accomplished within 200 
long to the "Legal Services" indus­ Occupation classification is more milliseconds; or the weights can be 
try category, while 32% of the often "clerk" or "secretary" than precomputed and stored. Precom­
oCCurrences of the singular form "lawyer." puting and storing the conditional 
"attorney" belong to classes other PACE features consist of single probabilities of all 4.5 million fea-
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tures can be accomplished in less 
than 10 minutes on a 32k proces­
sor, CM-2 Connection Machine. 

calculatIng Feature 
Importance 
Once features have been created it 
is necessary to weight the features 
according to their ability to classify 
the examples. In PACE, weights are 
calculated by methods similar to the 
sum of squared probabilities metric 
described in [28]. Stanfill and Waltz 
adopted the sum of squared proba­
bilities metric in order to assign 
higher weights to features that 
occur in fewer different categories. 
In the following examples we see 
this for three different features. 

Consider a domain with only 10 
categories (Figure 1). To determine 
the importance of two different 
features, a histogram across the cat­
egories is constructed for each fea­
ture. If the sum of the distribution 
is normalized to one, each bar of 
the histogram represents the prob­
ability of the given category. given 
that the feature occurs in the exam­
ple [P(C1F)]. From the histograms 
in Figure 1 it appears that feature 1 
is equally likely to occur in each cat­
egory and thus is not very useful 
(this might correspond to a feature 
such as the word "the"). The histo-

Figure I. Comparing feature classlfl· 
cation value by category distribution 

#ofexampl~s .. A Poor,Feature 
containing 

gram of feature 2 indicates that if 
this feature is present, the test ex­
ample must belong to one of only 
two possible categories. Thus, we 
need a weight metric that retlects 
this difference. The sum of the 
squared conditional probabilities 
results in a weight of 0.1 for fl and 
0.5 for f2. The highest importance 
weight of 1.0 corresponds to a fea­
ture that is perfectly correlated with 
a single category. 

Weight (fk) = LP(C;!fk)2 
i 

Weight (f1) = 0.1 2 + 0.1 2 + 0.1 2 

+ 0.12 + 0.12 + 0.12 + 0.1 2 

+ 0.12 + 0.12 + 0.12 = 0.1 
Weight (f2) = 0.52 + 0.52 =: 0.5 
Weight (f3) = 1.02 = 1.0 

It should be noted that the sum of 
squared probabilities varies from a 
maximum of 1 when a feature ap­
pears only in one class and is of 
maximum usefulness, to a mini­

1 
mum of N when the feature ap­

pears uniformly across all classes ~ 
(N = the number of different 
classes). 

Per Category Feature Importance 
In PACE, the sum of squares im­
portance weighting in conjunction 
with the k-nearest neighbor metric, 
provides the best classification ac­
curacy for occupation coding. A 
different method provides the best 
classification accuracy for industry 

feature 1 
co c1 c2 c3 c4 c5c6 c7· c8 c9 

Categories 

1# of examples .1 . A Good Feature 
containing _1-_
feature 2 ,I ... .. +-1-,+1--+I--+.....;""".,.·~ 

cO e1 e2. e3c4 . c5 '. e6 c7 c8 c9 
Categories 

I
A Perfect Feature •. .

1# of examples 
containing 
feature·3 , .-.....+-1-+1-+.,....-1---+--1

ell c1 ~. C3 c4c5 c6 c7 c8 c9 
Categories 

coding. This second method con­
trasts with the sum of squared 
probabilities method by assigning 
different weights for the same fea­
ture depending on the category the 
feature is found in. For this reason, 
we refer to this method as "per cat­
egory" feature importance in con­
trast to the sum of squares metric 
which is identical for a feature 
across all categories (we will distin­
guish the two as "per category" and 
"cross category"). To see the bene­
fits from per category importance, 
consider a test example that con­
tains only the single feature 
"weaver." In the census database 
the word "weaver" occurs 84% of 
the time in the occupation category 
for cloth knitters and weavers. It 
also occurs in four other categories 
for basket and various types of wire 
and metal weaving, but much less 
frequently. If cross category fea­
ture weighting were used then the 
feature would have the rather high 
weight of 0.71 (0.71 = (.84)2 + 
(.07)2 + (.03)2 + (.03)2) and match­
ing training examples would have 
the same high score for each of the 
five weaving categories. Therefore, 
the metric does a good job of distin­
guishing these five categories from 
the rest ofthe possibilities with high 
confidence (0.7). but it can make no 
distinction between these catego­
ries. Clearly valuable information 
has been lost since the probability 
of the cloth weaver category condi­
tional to the word "weaver" is 12 
times higher than the next most­
probable category. 

This problem was resolved in 
PACE by calculating per category fea­
ture importance. This method calcu­
lates the conditional probability 
[p(C1F)] for every feature in every 
category and stores this number 
along with the feature in each ex­
ample. In this method each feature 
of the query contributes a different 
importance to the match depend­
ing on the category in which each 
example occurs. 

In the "weaver" example above 
the matching training examples 
would now have different scores 
based on their categories. Any 
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training example occurring in the enough to eliminate sampling er­ feature contained in the example 
"cloth weaver" category would have rors). This method has the addi­ has a P(C1F) = 1 the error is 0 inde­
a score (P([cloth weaverll"weaver"» tional advantage of a list of features pendent of the other features; 
equal to 0.84 whereas other catego­ and their weights that can be pre­ 2) each feature with a nonzero 
ries would have scores of 0.07 or computed and stored for each cate­ weight contributes to increasing 
0.03. Thus the score now correctly gory and the original data need not the certainty of the match score; 
reflects the high probability of the be retained. This can considerably and 3) the metric varies between 0 
"cloth weaver" category and the test reduce storage and computation and 1. 
example is more likely to be cor­ costs. A disadvantage of the To illustrate why the ERROR 
rectly classified. method (see Tables 5 and 6) is that metric might be more successful 

the MAX metric does not take mul­ than the SUM or MAX metrics, 
tiple sources of evidence from dif­ consider the two cases depicted in Accumulating Evidence 
ferent features into consideration. Tables 5 and 6 where a query ex­

It has been assumed to this point 
The advantages and disadvantages ample is matched against two train­

that the nearness between a test and 
balance out, however, to allow ing examples. In the first case the 

a training example is proportional 
MAX to achieve performance com­ two training examples differ by one

to the sum of the per category or 
parable to the SUM metric on this having a single highly weighted fea­

cross category weights of each fea­
database. ture and by in the other having sev­

ture contained in the test example: 
eral features with low weights. In 

Nearness (i, j) = L: w(k) f(k,l) Error MinimIzation Metric this case the SUM metric gives a 
k,l The Error Minimization Metric at­ higher score to example 2, leading 

where tempts to retain the best of both the to an incorrect classification. The 
MAX and SUM metrics. It is of in­ ERROR and the MAX metric give i indexes test examples 
terest since it outperforms both the the correct result. j indexes training examples 
SUM and MAX metrics when ap­ Table 6 illustrates that the MAX k indexes the features in test exam­
plied to the census Industry coding metric can also cause mistakes.ple i 
task. The general idea behind it is Here, one of the two matchingI indexes the features in training 
that if there is a single feature with training examples has a large num­examplej 

f(k,l) = I if feature I = feature k a high P(C1F) in a training example, ber of low weight features, whereas 
= 0 otherwise. then that feature should have a the second has only a single match­

w(k) is the weight of feature k large effect on the cumulative ing feature of slightly higher 
match score of the example. If, weight. In this case the MAX metric 

This is similar to the techniques however, two examples represent­ performs an incorrect classification. 
that have proved effective in previ­ ing two different categories each The SUM and ERROR metric give 
ous work [28]. It has also been used have large numbers of moderately the correct result. 
successfully in the census task and weighted features, then the nearest
 
will be called the SUM metric. One K Nearest Neighbors
 neighbor should be the one with 
difficulty with the sum metric is In a large database, such as the cen­the largest cumulative weight. In 
that examples of many words tend sus database, there can be manyessence, the ERROR metric be­
to have higher match scores than matches other than the nearesthaves like the MAX metric in cer­
examples with few words. match that can potentially contrib­tain situations and like the SUM 

ute to the accuracy and the confi­metric in other situations. It gives
MaXimization Metric dence of the assigned category. For strong weight to any outstandingly 
Another approach considers all example, if a large number of nearhigh P(C1F) value but still takes into 
features in the test example and neighbor examples are of the sameconsideration additional informa­
chooses the training example with category, a higher confidence score tion from other features. 
the greatest P(C1F), Le., the greatest can be assigned to the classification 

More precisely: probability for classifying the ex­ than if the nearest neighbors were 
ample into Category C given the of many different categories. To 
feature F. This is an appealing Nearness (i,j) = 1 - TIo - w(k) explore this idea classification ex­
strategy since it is founded on basic k.1 periments were conducted using k 

f(k,l» where w(k) = P(C1F)
probability argument, and avoids nearest neighbors (typically 10-15), 
preferring long examples. For in­ Here the error of a feature is using the following algorithm. 
stance, if the maximum P(C/F) = equal to (1 - P(CIF», or the prob­ After the match step, the k 
0.9 for C = Cl and F = Fl then any ability that an error is made in as­ matches having the best scores are 
query containing feature F1 will be signing the category based on this identified. Cross-category weights 
classified correctly 90% of the time feature. This metric has the follow­ are used for this step. The individ­
(assuming the database is large ing interesting properties: 1) if any ual scores are then aggregated by 
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categories (among the best k 
matches). Finally the category with 
the highest aggregate is used to 
classify the test example. 

In cases where there is a single 
clear winner, all k-nearest matches 
will belong to the same category, 
and the k-nearest neighbor method 
performs the same as a single near­
est neighbor match. If there are a 
number of near matches, this 
method can protect against overval­
uing a single spurious near match. 
In the real example in Table 7, the 
nearest neighbor method can in­
correctly predict occupation cate­
gory 569 (which has one match in 
the first 15 matches), while the 
k-nearest neighbor method cor­
rectly predicts category 579 (which 
has 7 of the first 15 matches). 

optimizing K 
A further improvement in the algo­
rithm can be gained by optimizing 
the value of k. A range of values 
from 3 to 25 were tried. (Results are 
shown in Table 8.) Only variations 
in the overall accuracy are re­
ported. All of the experiments were 
run on the same set of 1,000 ran­
domly selected examples. 

ASsigning a Confidence Score 
Apart from overall accuracy, a ro­
bust confidence score is crucial for 
increasing the percentage of the 
test cases that can be processed at 
human levels of accuracy. For the 
same overall accuracy, a confidence 
score that better separates good 
matches from poor ones will result 
in a higher percentage of processed 
examples. Initially, the match score 
itself was used as a confidence 
score. However, this did not take 
into account matches from other 
categories that had scores close to 
the best score. In order to include 
the effect of having closely compet­
ing categories, we compared the 
score of the best predicted category 
with the next best predicted cate­
gory, replacing the score of the best 
category with an adjusted confi­
dence score using a formula A/(A + 
B) where A is the score of the best 
category and B is the score of the 
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next best category. This formula to human coders (in Figure 2c the metric. PACE was able to process 
reduces the confidence when the size of these two lists are noted as C 63% of all returns at the same level 
scores of the best and the next best and R, respectively). Thus for any of accuracy as a human coder, 
category are close. The use of ad­ given threshold, accuracy can be which is significantly better than 
justed scores for the k-nearest expressed as C'/C (where C' de­ the 57% of returns that are handled 
neighbors metric increased the notes the number of examples in C by the expert-based AIOCS tech­
number of examples processed by that were correctly classified), and niques (Figure 3). 
3%. coverage can be expressed as The best occupation coding 

C/(C + R). MBR method is based on cross­
Evaluating performance category weighting of single field 
Two measures are relevant in eval­ features using the summation met­Valldatton Methodology and Best 
uating the performance of these ClaSSification MetriCS ric and k nearest neighbors. In this 
classification systems; we will call Cross validation was used to test case an optimal k was found to be 
them accuracy and coverage. Cover­ and compare the different classifi- 12, which resulted in PACE being 
age measures the percentage of all 
returns/forms that are attempted 
by the system and not referred to 
human coders. Accuracy measures 
the percentage of attempted classi­
fications that are correct. The ideal 
system would thus have high accu­
racy (few mistakes) and high cover­
age (few referrals). In general, both 
cannot be simultaneously maxi­
mized, and compromises must be 
made (Figure 2a). In the case of the 
census system, we were constrained 
by the problem definition to pro­
duce a system that was at least as cation metrics. Both two-way cross able to process 57% of the returns 
accurate as human coders. Thus, validation (where the database was at the accuracy level of a human 
this compromise required a de­ randomly split into a test set and a coder. This contrasts very favorably 
crease in the coverage in order to training set) and noway cross valida­ with the 37% attained by AIOCS 
increase the accuracy to levels of tion (where only a single test exam­ (Figure 3). 
86% for occupation coding and ple was drawn from the database at It is clear that weighted feature 
90% for industry coding. This a time) were used. In both cases the metrics perform better than un­
tradeoff was accomplished by set­ test and training set were kept com­ weighted feature metrics. Although 
ting "referral thresholds" for each pletely isolated and the relevant sta­ the error metric provides the best 
class, such that if the confidence tistics for feature weights were cal­ performance for industry classifica­
score of the class of the best match culated solely from the training set. tion, the other metrics are not far 
does not exceed the threshold, then For the results that we cite, random behind. For occupation classifi­
the form is referred [7]. test sets of at least 5,000 examples cation, the k nearest neighbors 

Referral thresholds are calcu­ were used. This is large enough to method performed best, even with 
lated automatically. This is done by ensure the statistical significance of single words as features and cross­
first collecting a list of test examples the estimates of overall accuracy category weighting. These results 
that have all been classified into the and coverage. suggest that, for the level of perfor­
same category and then sorting While most of the MBR scoring mance we achieved, a number of 
them by confidence score. A refer­ metrics presented so far were very different methods and metrics lead 
ral threshold is then chosen as the successful on the classification task, to comparable results. Table 9 indi­
match score of each example and we found techniques that are supe­ cates how the main variants of the 
coverage and accuracy are evalu­ rior to the others for both the in­ MBR metric compared. 
ated at that point. A threshold for dustry and the occupation coding 
the required accuracy can then be problems. Interestingly, different SensItIvity to Database Size 
chosen and the coverage deter­ techniques were best for each of the Since all ofthese MBR methods are 
mined (Figure 2b). The choice of a two tasks. dependent on the size of the train­
given threshold divides the list of For industry coding, the best ing database, it is reasonable to ask 
examples into two sublists (Figure MBR method is based on per-cate­ how much performance improve­
2c): those that are covered by the gory weighting of conjunctive fea­ ment could be gained by having an 
system and those that are referred tures using the error minimization even larger training database. We 
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explored this question by construct­
ing an experiment that compared 
the overall match-rate (accuracy at 
100% coverage) at different data­
base sizes. To conduct the experi­
ment we performed a nearest k 
neighbors classification (k = 12) by 
randomly selecting increasingly 
larger subsets of the database. This 

Fllure Z. ThreshOld calculations fOr 
coverage and accuracy 

experiment compared the accuracy 
of assigning industry codes by 
matching on the Industry and the 
Company Name fields with cross­
category weighting. A random sam­
ple of 10,000 examples was used as 
a test set. 

We found a difference of 12% in 
the overall match rate accuracy 
when the training set was varied in 
size from 10% to 100% of the full 
132,000 example database 
(Figure 4). More importantly, dou­
bling the database size seemed to 

,343343' 
343~3 

>0,80. 0.63 

+:. i:' 

yield an improvement of 3-4% 
over the range of the experiment. 
This suggests that doubling the 
database size to 264,000 examples 
would result in an accuracy of up to 
75% at 100% coverage. Empirically 
we found that a 3-4% change in 
accuracy at 100% coverage led to a 
comparable change in coverage at 
human accuracy levels. A 3-4% 
change in coverage would result in 
significant financial savings for the 
Census Bureau. 

We conclude that the perfor­

343343 343343 

512 765762 343 

0.50 0.47 0.39 0.35 
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mance of PACE is sensitive to data­
base size and that we could not have 
reduced the database size by 50% 
without seriously compromising 
performance. It is also clear that 
the current database size is smaller 
than the optimum. and that enlarg­
ing it could yield significant im­
provements. 

The Data parallel
Implementation 
One of the main advantages of an 
MBR approach to classification is it 
enables the use of massively parallel 
supercomputers by easily accom­
modating the programming model 
most naturally suited to massively 
parallel computers. This program­
ming model is called "data parallel" 
computation and represents prob­
lems and implementations where 
many copies of a given data struc­
ture can be distributed to multiple 
processors and processed in paral­
lel. 

In the census application this 
data structure consisted of the 
fields and features of each training 
example. their corresponding 
weights (if they were precalculated 
and stored). and the class of the 
data item. This data structure was 
instantiated with the fields and cat­
egory of each example and stored 
one per processor on an 8K proces­
sor CM-2 parallel computer (132K 
virtual processors are simulated). J20 ..,30. ·.4Q'. .50.,.. 6~. 70. . 80 .90 
To compare a new example with .,O~~b~,,·Si~('1(IOo/.... '32;QO()'~X81nple$)iPlilroont.
 

the 132k examples stored in the
 
CM-2, features from different
 
fields of the example (typically are grouped together in adjacent Figure I. Relative coding perfOr·
 

mance of different systems (Note that
words) are broadcast serially and processors in what is called a seg­
Human coverage does not achieve

the processors compare the broad­ ment of processors (Figure 5). The 100% as some responses handled by
 
cast features with the features of feature whose weight is desired is human coders may be referred to ex·
 

perts, or may not be codable at allJ
their respective examples in paral­ then matched to each example in 
lel. modifying their cumulative parallel and a I or a 0 is retained in "au.... SenSitivity of Industry cod· 
scores in case of a match. The each processor to signify the pres­ Ing to training database size 
scores are then compared across all ence or absence of the feature in 
examples to find the nearest match the particular example. It should be 
(this is accomplished using a global noted that the conditional probabil­
max operation). ities required for both the per­ called Scan was used. This opera­

Calculations of the cross-cate­ category and cross-category weight. tion can perform the summation 
gory and per-category weights can ings are simply the sum of these Is within each segment in parallel in 
also be accomplished under the and Os within each segment divided slightly less time than one general 
data parallel model. To accomplish by the sum across all segments. To communications step. The summed 
these calculations efficiently. exam· accomplish these summations a value of each segment is left in the 
pies belonging to the same category powerful data parallel operation processor at the end of each seg-
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ment where it can be copied back to 
the other processors in the segment 
via another scan operation and 
then divided by the global sum to 
determine the conditional probabil­
ity for each category for this partic­
ular feature. 

This parallel weight calculation 
algorithm is sufficient fOT calculat­
ing feature weights dynamically 
when there are only a few «100) 
features in a test example, but when 
all features of the entire database 
must be calculated and stored it is 
not as efficient as possible. Since 
each feature must be broadcast in 
turn the algorithm is serial in the 
number of different features whose 
weights need to be calculated. In 
the census application there are 
over 4 million pairwise conjunctive 
features. To calculate these weights 
a more parallel algorithm is used. 

To calculate the weights of 01114.5 
million features, a parallel data 
structure was constructed residing 
in 4.5 million virtual processors. 
This data structure is a composite 
made up of slots for the first field, 
the second field, the category and a 
return address (Figure 6). The pro­
cessor containing each training ex­
ample creates all possible pairs of 
fields and instantiates this new data 

FI..... 5. calculating conditIOnal 
probabilities dYnamically 

'IgU,... calculating conditional 
probabilities fOr all feat\Jres 

structure. The intent of this com­
puter data structure is to act as a 
palette where all 4.5 million fea­
tures can be soned such that identi­
cal features end up within the same 
segments and identical features 
with the same category will be near 
each other within the same subseg­
ment. This can be accomplished 
with a single sort by viewing the 
field slots of the composite number 
as the most significant bits of the 
key and the category slot as the least 
significant. Once the features have 
been organized in this way seg­
mented scans can be used in the 
same manner as previously (the 
global sum can now be replaced by 
a scan across the feature segments). 
Once the weights are calculated 
they can be sent back and stored in 
their originating training example 
via the return address retained in 
the composite data structure. Using 
this method the 4.5 million feature 
weights can be calculated and 

stored in only a few minutes, and by 
using these precomputed feature 
weights the classification system is 
able to run at the high processing 
speeds required by the Census (10 
forms per second). 

The Hardware 
The CM2 is a massively parallel 
computer with a maximum of 
65,536 single bit processors and 
2.048 floating-point accelerators 
shared evenly amongst the proces­
sors [17]. Each processor has its 
own local memory of up to I28KB 
and can communicate with every 
other processor via a hypercube 
network. All programming is per­
formed using a front end interface 
such as a Sun or a Vax computer. 
Typically a large amount of data is 
loaded onto the CM-2 and a user 
program running on the front end 
controls the operations of all the 
CM-2 processors on the data. The 
processors all execute the same 
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operation on their individual data 
at the same time. The user pro­
grams can be written in *Lisp, c* 
and Fortran 90, which use parallel 
extensions of the respective lan­
guages. For this project we used an 
8192 processor CM-2 (with floating 
point enhancement) and a Sun 
4/280 front end. The software was 
developed in *Lisp. 

MBR Advantages over Expert 
Systems 
The results of our experiments 
have demonstrated that the perfor­
mance of PACE for classifying cen­
sus returns is superior to that of the 
AIOCS expert system built for the 
same purpose at the Census Bu­
reau. However, it might simply be 
the case of particular projects being 
done with different degrees of skill 
or care. We would like to argue 
here that this is not the case, and 
that, for similar classification do­
mains, MBR (as well as other data­
driven methods) hold several ad­
vantages over systems that require 
hand building (knowledge engi­
neering) such as traditional expert 
systems. 

Ease of programming an applica­
tion. PACE required only about 
four person-months of effort to 
build. including some time to build 
tools. In contrast, AIOCS took 
nearly 192 person-months. Both 
applications were built on top of 
standard computer languages 
(*Lisp for PACE and Fortran for 
AIOCS). Additionally, each system 
required the preclassified database 
of examples. 

The main effort in building an 
MBR system is deciding how to 
compare the various types of fields 

for similarity. For numerical and 
logical fields, one can use statistical 
methods to decide how heavily to 
weight each field of each example 
or one can perform an optimization 
in field-weight space. For example. 
in [31] several sets of random 
weightings for the various fields 
were generated, and then each set 
was tried to see which gave the best 
classification performance on a test 
dataset. For text fields, a weighted 
match based on the methods used 
for text-text comparisons in the 
SEEKER system [26] could be 
adapted. These also use statistically 
based word overlap weightings. 

The main effort in building ex­
pert systems is the encoding of an 
expert's knowledge as rules and a 
knowledge base. Either the expert 
or a knowledge engineer must 
hand-build the system. Both are 
time-consuming procedures for 
which only fairly general guidelines 
exist. Experts can seldom identify 
the rules used to classify cases, and 
as in the census domain, often pro­
vide general rules that do not easily 
match the specific responses con­
tained in the database. The process 
of building rule sets still appears to 
be more of an art than a science. 

Accuracy via completeness and 
uniformity of coverage. MBR sys­
tems can be built directly from the 
entire database. Because of this the 
resulting mix of examples will di­
rectly mirror the actual numbers of 
previous cases, and there will be 
greater coverage for cases that 
occur more often, leading to better 
overall performance. To see this, 
note that the greater the number of 
cases in an MBR system. the greater 

the chance of exact or near-exact 
matches. Since an exact match leads 
to a trivial decision process, and is 
guaranteed to be correct, the larger 
the database or denser the exam­
ples close to the case one is attempt­
ing to classify, the better the accu­
racy of the MBR system's 
performance. Moreover, even a 
single example can be useful in 
classification. In a medical data­
base, the first case of Legionnaires' 
disease would not have closely 
matched any previous cases, but 
once the first case had been en­
countered and included in the 
database, the second case could 
immediately be recognized and 
grouped with the first. 

In an expert system, it is very dif­
ficult to characterize. let alone es­
tablish, the degree, uniformity, and 
accuracy of coverage. Often it is 
necessary to create a sample set of 
classified examples to be sure that 
the expert system adequately covers 
the required classifications. In the 
census problem, this became appar­
ent a few years after the initial de­
velopment of AIOCS, when the 
need to quantify the performance 
of the system led to the creation of 
the 132,247 example text data set. 

Ability to use mixed records (text, 
numbers). As discussed earlier, it is 
fairly easy to match examples that 
include phrases, numbers. and logi­
cal variables. While this does not 
differentiate MBR systems from 
expert systems, it does differentiate 
MBR from artificial neural net sys­
tems in which a good deal of clever­
ness is often necessary to input vari­
ables unless they are numerical or 
logical in form. 
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Scalability Because MBR systems surprised that their changes made was developed-nearly 50 times 
map easily into the data parallel marginal or even negative changes faster than AIOCS. 
computation model they can be to classification performance. We attribute the significant de­
scaled to the limits of the memory crease in PACE's development time 
of the hardware. On a CM-2 Con­ Inherent confidence measures. to MBR's ability to automatically 
nection Machine system, the data­ MBR generates a nearness measure exploit the expert knowledge in a 
base limit (for in-memory opera­ for each example. Ifany new exam­ large, previously classified data­
tion) is 8GB, or about 80 million ple is identical to or very similar to a base, thus avoiding exhaustive 
records of 100 bytes each and sev­ previously seen case, then the MBR hand coding of many rules. PACE, 
eral massively parallel machines system can assure its user that it has in turn, is made possible through 
introduced in 1991 offer even very high confidence in its results. the data parallel hardware and pro­
larger memory space. These large If no previous case matches closely, gramming models of massively par­
resources of today's supercomput­ it can report the closest case(s), but allel supercomputers. The avail­
ers are often a critical advantage to at the same time inform the user ability of this supercomputing 
empirical learning systems that can that the results are not very certain. power also allowed us to try many 
take advantage of them. In the In a sense, the system knows when MBR variants and to test each ex­
bayesian census classification sys­ it knows. tensively. This would not have been 
tem of Creecy et a1. [12] the system Forming a trustworthy confi­ feasible on a slower machine. 
was unable to produce and use dence measure for standard expert The requirement of a pre-exist­
pairwise conjunctive features be­ systems is a challenging problem ing training database appears to be 
cause of the limitations of the serial with uncertain success [14, 21, 32]. an added constraint on the domains 
hardware on which it was devel­ In general it is difficult to reflect to which empirical learning models, 
oped. the statistical likelihoods of various such as MBR, may be applied. 

As a database gets large, an ex­ possible scenarios in numbers asso­ However, it is often the case, as it 
pert system mayor may not be able ciated with rules. was for the census, that such data­
to cope. If the database is not well­ bases need to be created regardless

Justification for classifications. Inbehaved (as when there is an open­ in order to adequately test the auto­
an expert system, a justificationended set of possible values for a mated system, and for a range of 
usually consists of a chain of rules,given database attribute, e.g., the tasks such large training databases 
beginning with premises true of theoccupation, industry, and company do already exist (e.g., news story
current situation, and ending with a name in the census database) then classification, medicine, optical
desired outcome. This often may bescaling will be difficult or impossi­ character recognition, financial 
or may not be truly helpful in con­ble. performance). In these cases, MBR 
vincing the user that the explana­ can dramatically reduce the effort 
tion is valid. and merits credence. Ease of updating on the basis of and cost of developing automated 
Artificial neural nets offer no ex­changing data. In an MBR data­ systems with expert performance.
planations at all, except in the spe­base, new classified examples can Therefore, massively parallel com­
cial cases where each hidden unit isbe added, and old, obsolete exam­ puting and empirical learning sys­
sensitive to a single possible inputples removed. On the next d(~cision tems such as PACE appear to be at 
pattern [23]. MBR systems offer thecycle the MBR system can make its the beginning of an important new 
nearest neighbor (or neighbors)decisions based on the current state trend in the way automated classifi­
and their classifications as explana­of the world (assuming that one of cation systems are built. As the gap
tions (precedents). Such explana­the learning variants of MBR is not between the price of MIPS and the 
tions are natural and believable,being used). Learning MBR sys­ price of a knowledge engineer's 
and easy to compute. tems trade relatively lengthy up­ time widens, this should become 

date or set-up times and rapid deci­ more and more evident. D 
sion performance for low initial Conclusion 
set-up or update time and slower PACE, a memory-based reasoning 
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